Nuclear Fusion Promises “Near-Limitless Energy”—Someday

RockedBuzz
By RockedBuzz 2 Min Read

News, Nuclear Fusion Promises “Near-Limitless Energy”—Someday: detailed suggestions and opinions about Nuclear Fusion Promises “Near-Limitless Energy”—Someday.

This week’s big scientific breakthrough comes with big caveats.

This story and brief explainer were originally published by the Guardian and are reproduced here as part of the Climate Desk collaboration. 

Researchers have reportedly made a breakthrough in the quest to unlock a “near-limitless, safe, clean” source of energy: They got more energy out of a nuclear fusion reaction than they put in.

Nuclear fusion involves smashing together light elements such as hydrogen to form heavier elements, releasing a huge burst of energy in the process. The approach, which gives rise to the heat and light of the sun and other stars, has been hailed as having huge potential as a sustainable, low-carbon energy source.

However, since nuclear fusion research began in the 1950s, researchers have been unable to a demonstrate a positive energy gain, a condition known as ignition. That was, it seems, until now.

According to a report in the Financial Times, which has yet to be confirmed by the National Ignition Facility at Lawrence Livermore National Laboratory in California that is behind the work, researchers have managed to release 2.5 megajoules (MJ) of energy after using just 2.1 MJ to heat the fuel with lasers.

Dr Robbie Scott, of the Science and Technology Facilities Council’s (STFC) Central Laser Facility (CLF) Plasma Physics Group, who contributed to this research, described the results as a “momentous achievement.”

“Fusion has the potential to provide a near-limitless, safe, clean, source of carbon-free baseload energy,” he said. “This seminal result from the National Ignition Facility is the first laboratory demonstration of fusion ‘energy-gain’—where more fusion energy is output than input by the laser beams. The scale of the breakthrough for laser fusion research cannot be overstated.

Story continues

Share This Article
Leave a comment